
Case Study
Building a Nationwide Restaurant
Menu Database and API

Introduction

When I started this project, I had exactly zero budget to work with. The only existing API that

provided similar restaurant menu data was prohibitively expensive—charging $0.02 per API call.
To put that in perspective, retrieving menu data for all 800,000 restaurants individually would

have cost $16,000—far beyond my resources.

I needed a way to gather, structure, and serve this massive dataset without relying on expensive

third-party services. What followed was a deep dive into scalable data collection, real-time API

processing, and cost-effective infrastructure, resulting in a fully functional, self-sustaining

solution that could provide the same data at a fraction of the cost.

This case study outlines the technical challenges, solutions, and optimizations that made it

possible to build a nationwide restaurant menu database and API from scratch.

Problem Statement

Despite the vast number of restaurants and menu items across the country, no centralized,

searchable database for restaurant menus existed. Users—including businesses, developers, and

consumers—had no simple way to look up detailed menu information at scale.

The primary challenges included:

Data Volume: Managing and processing information from 800,000+ restaurants and
60,000,000+ individual menu items.
Real-Time Updates: Keeping the database fresh by continuously checking for new entries
and updates.
Efficient Querying: Delivering rapid search results despite the sheer scale of the dataset.
Cost Efficiency: Avoiding high infrastructure expenses that would make the project
unsustainable.

Technical Implementation

Back End & Data Collection

The back end was built using Node.js and leveraged a distributed network of multiple servers.

Instead of relying on a single expensive API, I developed a custom web scraping and data

aggregation system that could efficiently extract and structure restaurant menu data.

Each server was responsible for scraping a portion of the data, enabling the system to scale

efficiently. Over time, I optimized the process to reduce the data collection cycle to just 6 hours

for all 800,000 restaurants, ensuring that the dataset remained fresh by continuously checking

for new and updated entries.

API & Integrations

At the heart of this project was a high-performance REST API, designed to:

Handle Large-Scale Data: Processing and serving menu data efficiently to thousands of
potential users.
Manage Access & Monetization: Integrating with Stripe to handle subscriptions and API
quotas.
Optimize Performance: Maintaining sub-150ms response times for most requests, even
when handling massive amounts of data.

Key API Features:

Proprietary Request Tracking: A custom system allowed for tiered API requests, ensuring
fair usage across different subscription levels.
Stripe Integration: Users could upgrade, downgrade, or cancel their subscriptions
seamlessly through Stripe.
Performance Optimization: Even for data-intensive queries, response times remained
under 400ms.

Front End & User Interface

The front end was built with React, providing a seamless dashboard where users could:

Manage their subscriptions (upgrade, downgrade, or cancel).
Track every API request for transparency and usage insights.
Search and filter menu data in real-time, leveraging the speed of Elasticsearch.

Data Storage & Search Optimization

The data was stored in Elasticsearch, which enabled:

Ultra-fast search capabilities, even with tens of millions of records.
Real-time indexing, ensuring new data was instantly searchable.
Optimized querying, reducing infrastructure load while maintaining high-speed results.

Challenges & Innovative Solutions

Handling such a massive dataset posed unique challenges:

Challenge Solution

Scalability – Managing millions of records

across multiple servers.

Implemented a distributed data scraping

approach with workload allocation.

Data Freshness – Keeping menus up to date

in near real-time.

Built a continuous refresh cycle, ensuring

data was always current.

Query Efficiency – Ensuring fast search

results despite large data volumes.

Leveraged Elasticsearch indexing for rapid

retrieval speeds.

Cost Constraints – Competing with

expensive third-party APIs.

Developed an independent data collection

pipeline, avoiding external API costs.

API Process & Monetization Strategy

The API was the core of this project, acting as the gateway to the data. Given the project's initial

zero-budget nature, monetization was key to sustaining long-term viability.

Subscription & Access Management

Stripe Integration ensured seamless subscription handling and access control.
Tiered Pricing allowed different levels of data access, balancing affordability with
sustainability.
Request Tracking System enabled efficient quota management without overloading
infrastructure.

Performance Optimization

Even with millions of menu items, the API consistently delivered:

Sub-150ms response times for standard queries.

Sub-400ms response times for high-load, complex queries.
Minimal downtime, thanks to smart caching and load balancing.

Performance Metrics & Key Outcomes

The project achieved significant milestones in both technical efficiency and cost savings:

Metric Outcome

Restaurants Processed 800,000+

Menu Items Indexed 60,000,000+

Data Refresh Rate Every 6 hours

API Performance <150ms for most queries, <400ms for
complex queries

Infrastructure Costs 90% lower than third-party API alternatives

Despite the technical success, the project faced financial sustainability challenges—

maintaining such a large-scale infrastructure required significant resources. To address this, I

scaled down the refresh cycle and optimized costs, ensuring a leaner, more sustainable model
for long-term use.

Conclusion & Future Directions

This project was both a technical challenge and a lesson in cost-effective data management. It

reinforced my ability to:

Develop scalable, high-performance APIs for large datasets.
Optimize data collection and storage while minimizing costs.
Manage real-world constraints by balancing infrastructure, speed, and affordability.

Next Steps:

Refining data refresh cycles to further reduce costs while maintaining accuracy.
Exploring alternative cloud solutions to optimize infrastructure spending.
Opening the API to new business models, including enterprise licensing and integrations.

By combining technical efficiency with business practicality, this project showcases my ability

to build, scale, and sustain data-driven solutions in the real world.

Final Thoughts

Starting with no budget and no feasible alternative, this project proved that innovation and

efficiency can overcome even the most daunting challenges. It’s a testament to the power of

technical problem-solving and the importance of cost-conscious development in the modern

data economy.

